The Hypotensive Activity of N-Cyclohexyl and N-Methyl Derivatives of Alkylenediamines ${ }^{1}$

Orgmic: Chemistry Department and Pharmacology Depurtment, Reseach
Division, Ahboft Laboralories, Toth Chictgo, Ihtions.

Received A pril 20, 19193

Abstract

A series of N-cyclohexylalkylenediannes, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{R}^{1} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NR}^{2} \mathrm{I}^{3}\left(\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{CH}_{3}\right.$, or $\mathrm{C}_{6} \mathrm{H}_{11} ; n=$ $2,3,4,5,6$, or 10), has been investigated for hypotensive activity. Since N-cyclohexyl-1,3-propanediamine appeared to be the most active, further work was restricted to derivatives of this compound. The anino hydrogens were progressively substituted with methyl and cyclohexyl groups, and quaternary salts were prepared from the bis-tertiary amines. The most potent hypotensive agent among this group of compounds proved to be the dimethiodide salt of N-eyclohexyl-N,N', N'-trimethyl-1,3-propanedimmine (Table I, 11a). Pharmacologiosl d:attit are presented.

Through routine screening of compounds for hypotensive activity it was discovered that N-cyclohexyl-1,3-propanediamine (Table I, 2) showed significant activity. It was compared with a series of homologous alkylenediamines ($\mathrm{I}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) where n $=2,4,5,6$, and 10 . They were prepared by reductive alkylation of the appropriate alkylenediamines with cyclohexanone (method A). Since none of the five

I
additional compounds showed any marked increased in activity over the original lead, further work was restricted to derivatives of 1,3 -propanediamine. Our goal was to substitute methyl and cyclohexyl groups for the amine hydrogen atoms.

If only one cyclohexyl group is present, two monomethyl derivatives, two dimethyl derivatives, and one trimethyl derivative are possible. Reduction of 3-(N-cyclohexyl-N-methylamino)propionitrile gave N -cyclohexhyl-N-methyl-1,3-propanediamine (Table I, 7), while $\quad N$-cyelohexyl-N'-methyl-1,3-propanediamine (T'able I, 8) and the two dimethyl derivatives (Table I. 9,10) were obtained by method A from cyclohexanone and the appropriate diamine. The trimethyl compound (Table I, 11) was prepared from N-cyclo-hexyl- $\Lambda^{\prime \prime}, N^{\prime \prime}$-dimethyl-1.3-propanediamine by methylation with formaldehyde-formic acid (method B).

Reaction of 1,3 -propanediamine with an excess of (yclohtexanone gave $N^{-N} N^{\prime}$-dicyclohexyl-1,3-propanedianine (Table I, 12). Only one monomethyl derivative (Table I, 13), and one dimethyl derivative (Table I. 14), of this compound are possible. The former was prepared by mothod A, and mothod B was used to ohtain the latter.

The isomeric unsymmetrical dicyclohexyl compounds could not be prepared by method A. They could, however; he synthesized by alkylation of the appropriate anine with 3 -dicyclohexylaminopropyl chloride (metliod (').

Reaction of B-dicyclohexylaminopropyl chloride with anmonia, methylamine, and dimethylamine gave

[^0]the desired three unsymmetrical dicyololexy] derivatives (Table $I, 15,16,17$). The two tricyclohexyl compounds (Table I, 18, 19), as well as $N_{, ~ N, ~ N ', ~ N '-~}^{\text {- }}$ tetracyclohexyl-1,3-propanediamine (Table I. 20), were also prepared by method C. Attempts to prepare the latter from dicyclohexylamine and 1,3-dibromopropane failed.

Several quaternary salts were prepared from the fully alkylated diamines. N-Cyclohexyl- $N, N^{\prime}, N^{\prime \prime}$-trimethyl-1,3-propanediamine and N, N^{\prime}-dicyclohexyl-N, N'-di-methyl-1,3-propanediamine formed bisquaternary salts, while N, N-dicyclohexyl- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-dimethyl-1,3-propanediamine and N-methyl-N", N^{\prime}, N^{\prime}-tricyclohexyl-1,3propanediamine formed only monoquaternary salts.

Reaction of N-cyclohexyl- $N^{\prime}, N^{\prime}, N^{\prime}$-trimethyl-1,3-propanediamine with cyclohexyl bromide did not lead to formation of any quaternary compound, but gave the dihydrobromide salt. of the starting amine.

Pharmacology

Methods.-Normotensive cats, unselected as to size or sex. were anesthetized with $30 \mathrm{mg} . / \mathrm{kg}$. i.p. of pentobarbital. Mean arterial blood pressure responses were recorded from an exposed carotid artery on a Grass Model 5 polygraph via a Statham pressure trathsducer (Model P23AC). Respiration and heart rate were also recorded. Drugs were dissolved in saline and injected intravenously in doses of $1.25,2.5$, and 3.0 mg.,ikg. body weight. The dose administered refers to milligrams of free base for the anines and to milligrams of cation for the quaternary compounds.

It is recognized that the magnitude and duration of a depressor response are dependent on many factors, but a method is employed here wherein the observed blood pressure response per se is used as a basis of comparison of hypotensive activity of this large group of compounds. A "hypotensive index" for cach compound was calculated using the formmla
(sum of decreases in pressure in mom.) (sum of durations of responses in mill.)

$$
\text { sum of administered doses in } \mathrm{mg} . / \mathrm{kg} \text {. }
$$

Results.--Blood pressure responses to each of the compounds were obtained and a "hypotensive index" was calculated for each compound. Onr most active compound, 11a, caused a meart reduction of 105 mm . of

Table I

Compound ${ }^{\text {a }}$				\ldots			Salt	Formula					Calcd. Found	
				Yield.	B.p. ${ }^{\circ} \mathrm{C}$.		M.p.,							
	$\mathrm{R}^{1} \quad \mathrm{R}^{2} \quad \mathrm{R}^{3}$	n	Method ${ }^{\text {b }}$	$\%$	(mm.)	n^{25} D	${ }^{\circ} \mathrm{C}$.		Calcd.	Found				
1	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	2	A	84	102-104 (20)	1.4785								
	Dihydrochloride						212-214 ${ }^{\text {d }}$	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~V}_{2} \cdot 2 \mathrm{HCl}$	44.63	44.35	9.37	9.34	13.02	13.18
2	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	3	A	63	117-120 ${ }^{\circ}$ (15)	1.4792								
	Dihydrochloride						20: -206^{d}	$\mathrm{C} \cdot \mathrm{H}_{20} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	47.16	46.90	9.67	9.59	12.22	12.30
3	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	4	A	84	130-131 (11)	1.4788		$\mathrm{C}_{10} \mathrm{HI}_{22} \mathrm{~N}_{2}$	70.53	70.37	13.02	12.81	10.45	16.44
	Diliydrochloride						$249-250^{d}$	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	49.38	49.54	9.95	10.27	11.52	11.31
4	$\begin{array}{lll} \mathrm{H} & \mathrm{H} & \mathrm{H} \end{array}$	5	A	82	142-147 ${ }^{\text {(}}$ (11)	1.4766								
	Dil,ydrochloride						239-240 ${ }^{\text {d.u }}$							
5	$\begin{array}{lll} \mathrm{H} & \mathrm{H} & \mathrm{H} \end{array}$	6	A	87	$105-116^{f}(0.5)$	1.4790								
	Iiliydrocthoride						$234{ }^{d}$	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	53.13	53.03	10.40	10.61	10.57	10.40
6	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	10	A	77	159-162 (1.0)	1.4736		$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2}$	75.52	75.47	13.47	13.56	11.01	10.8:)
	Diliydrochloride						$220{ }^{\text {d }}$	$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	58.70	58.45	11.08	11.09	8.56	8.79
7	$\mathrm{CH}_{3} \mathrm{H} \quad \mathrm{H}$	3	g	87	133-137 ${ }^{\text {/ }}$ (24)	1.4783								
	Dihydrochloride						193.5-195.5i	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	49.37	49.39	9.95	9.87	11.52	11.57
8	$\mathrm{H} \mathrm{CH}_{3} \mathrm{H}$	3	A	58	100 (0.6)	1.4725		$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$	70.53	70.86	13.02	12.46	16.45	16.86
	Dihymrochloride						282.5-284.5 ${ }^{\text {d }}$	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	49.37	49.38	9.95	9.70	11.52	11.42
9	$\mathrm{CH}_{3} \mathrm{CH}_{3} \quad \mathrm{H}$	3	A	52	132-134 (20)	1.4711		$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2}$	71.68	71.92	13.13	13.22	15.20	15.39
	Dihydrochloride						192.j-194.5i	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	51.35	31.49	10.19	10.28	10.89	11.05
10	$\mathrm{H} \quad \mathrm{CH}_{3} \quad \mathrm{CH}_{3}$	3	A	98	103-113 (10-	1.4620		$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{Ni}_{2}$	71.68	71.49	13.13	13.24	15.20	15.39
	Dihydrochloride				11)		$235-236^{d}$	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	51.35	51.50	10.19	10.39	10.89	10.60
11	$\begin{array}{llll} \mathrm{CH}_{3} & \mathrm{CH}_{3} & \mathrm{CH}_{3} \end{array}$	3	B	80	70-72 (0.5)	1.4643		$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{2}$	72.66	72.91	13.21	13.51	14.12	14.22
	Dihydrochloride						287-288 ${ }^{\text {d }}$	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	53.13	53.34	10.40	10.37	10.33	10.08
11 a	Dimethiodide						229-230 ${ }^{\text {k }}$	$\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{~N}_{2}$	34.86	34.95	6.69	6.84	5.81	5.88
11b	3.4-Dichiorobenzyl chloride						194.5-19.5.5	$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{2}$	57.95	57.68	7.93	7.76	7.11	6.88
12	$\mathrm{H} \quad \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{H}$	3	A	90	l									
	Dihydrochloride						287-287. $5^{\text {d }}$	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	57.87	57.91	10.36	10.41	9.00	9.17
13	$\mathrm{CH}_{3} \quad \mathrm{C}_{6} \mathrm{H}_{11} \quad \mathrm{H}$	3	A^{m}	81	193 (15)	1.4883		$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{2}$	76.12	76.19	12.78	12.81	11.10	11.09
	Hydrochloride						155-155. 5^{i}	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	66.51	66.78	11.51	11.32	9.69	9.76
14	$\mathrm{CHI}_{3} \quad \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3}$	3	B	85	138-142 (1.0)	1. 4880		$\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2}$	76.62	76.60	12.86	12.65	10.51	10.72
	Dihydrochloride						220-221 ${ }^{n}$	$\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	60.16	60.24	10.69	10.82	8.25	8.40
14 a	Dimethiodide						23j-235.5	$\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{I}_{2} \mathrm{~N}_{2}$	41.46	41.48	7.33	7.14	5.09	5.16
14b	Diethiodide						206-206.5 ${ }^{\circ}$	$\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{I}_{2} \mathrm{~N}_{2}$	43.60	43.73	7.07	7.70	4.64	4.85
14 c	Bis-(2-bromobenzyl bron,ide)						175.s-176.50	$\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{Br}_{4} \mathrm{C}_{2}$	48.58	48.59	6.05	6.01	3.66	3.80
15	$\mathrm{C}_{6} \mathrm{H}_{11} \quad \mathrm{H} \quad \mathrm{H}$	3	C	46	114 (0.2)	1.4962		$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2}$	75.56	75.39	12.68	12.86	11.75	11.70
16	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3} \quad \mathrm{H}$	3	C	50	125-126 (1.2)	1.4922		$\mathrm{C}_{88} \mathrm{H}_{32} \mathrm{~N}_{2}$	76.12	75.70	12.78	13.03	11.10	11.45
	Dikydrochloride						202-204	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	59.10	59.11	10.52	10.65	8.61	8.76
17	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3} \quad \mathrm{CH}_{3}$	3	C	74	$147-148^{p}(2.4)$	1.48.56		$\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2}$	76.62	76.69	12.86	12.75	10.51	10.54
	Diliydrochloride						198-199 ${ }^{\circ}$	$\mathrm{C}_{11} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	60.10	60.06	10.69	10.80	8.25	8.48
17 a	Ethobronide						179.5-180.5 ${ }^{\text {q }}$	$\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{Br} \mathrm{N}_{2}{ }^{2}$	60.78	60.21	10.47	10.30	7.40	7.45
17 b	4-Bromobenzyl brom						179-160	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Br}_{12} \mathrm{~N}_{2}$	3.5 .82	5 5 .80	7.81	8.05	5.43	5.52
18	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{H}$	3	C	74	214-222 (4.5)	1.4760		$\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{2}$	78.68	78.8.)	12.88	12.72	8.74	8.86
	Hydrochloride						$10{ }^{\text {a }} \mathbf{6}-18^{q}$	$\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	70.65	70.50	11.88	11.68	7.85	7.91
19	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3}$	3	C	80	193-195 (0.5)	1.5001		$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{2}$	78.97	78.40	12.65	12.83	8.37	8.51
	Dihydrochloride						162-1640	$\mathrm{C}_{22} \mathrm{H}_{4} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	64.84	64.56	10.89	10.99	6.88	6.88
19a	Methioide						170.5-171.5	$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{IN}_{2}$	57.97	57.91	9.52	9.78	5.88	5.93
19b	2.4-Dichlorobenzyl chloride						143-144	$\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{Cl}_{3} \mathrm{~S}_{2}$	65.71	65.36	8.94	8.95	5.29	5.20
20	$\mathrm{C}_{6} \mathrm{H}_{11} \quad \mathrm{C}_{6} \mathrm{H}_{11} \quad \mathrm{C}_{6} \mathrm{H}_{11}$	3	C	18	230-245 ${ }^{\text {c }}$ (1.5)	1.5022		$\mathrm{C}_{2} \mathrm{H}_{65} \mathrm{~N}_{2}$	80.53	80.27	12.52	12.44	6.96	6.96

 Cope, ref. 4, report b.p. $101-102^{\circ}(14 \mathrm{~mm}$.$) ; n^{25} \mathrm{D}$ 1.4800. ${ }^{d}$ Recrystallized from ethanol. ${ }^{e}$ Tarbell, Shakespeare, Claus, and Bunnett, ref. 6, report b.p. $80^{\circ}(0.5 \mathrm{~mm}.) ; n^{20}$ D 1.4820 . ‘A. R. Surrey, J. Am. Chem. Soc., 71, 3354 (1949) reports b.p. 111-118 ${ }^{\circ}$ ($0.7-0.8 \mathrm{~mm}$.); n^{25} d 1.4756. ${ }^{9}$ For method of preparation, see Experimental. ${ }^{h}$ J. Corse, J. T. Bryant, and H. A. Shonle, J. Am. Chem. Soc., 68 , 1907 (1946). report b.p. 122-124 ${ }^{\circ}\left(24 \mathrm{~mm}\right.$.). ${ }^{i}$ Recrystallized from 2-propanol. ${ }^{j}$ Recrystallized from ethanol-isopropyl ether. ${ }^{k}$ Recrystallized from 1-propanol. ${ }^{l}$ The product solidified and melted at $43-44^{\circ}$ after recrystallization from Skellysolve C. The recorded m.p. is 33° : J. A. Harpham, R. J. J. Simpkins, and A. F. Wright, J. Am. Chem. Soc., 72, 343 (1950). ${ }^{m}$ Prepared from cyclohexanone and N-cyclohexyl-N-methyl-1,3-propanediamine (7). ${ }^{n}$ Recrystallized from 2-propanol-methyl ethyl ketone. ${ }^{\circ}$ Recrystallized from acetone-ethanol. ${ }^{p}$ This compound slowly solidified, m.p. 26-29. . ${ }^{q}$ Recrystallized from acetone. F Br: Calcd., 21.28; Found: 21.38. ${ }^{s}$ The distillate solidified and was recrystallized from Skellysolve B to give a white solid which melted at $73-73.5^{\circ}$. ${ }^{t}$ The reported b.p. is $98-99^{\circ}(1.0 \mathrm{~mm}),. n^{20}{ }_{\mathrm{D}} 1.4805$, according to J. M. Stewart, J. Am. Chem. Soc., 76, 3299 (1954). ${ }^{u}$ The recorded m.p. is $246-248^{\circ}$, according to Stewart, see ref. t.
mean arterial blood pressure for an average of 100 min . at a dose of $1.25 \mathrm{mg} . / \mathrm{kg}$. Since 11 a had the highest index, it was arbitrarily assigned a value of 100 and the activity of all the other compounds was expressed as a fraction of this value. These data are summarized in Table II. The quaternary salts showed the greatest effect on the blood pressure. These compounds are probably exerting their effect through ganglionic blockade. Very few of the amines showed significant activity.

Experimental

3-Dicyclohexylaminopropyl Chloride,-A solution of 90 g .
(0.38 mole) of 3-dicyclohexylamino-1-propanol ${ }^{2}$ in 450 ml . of chloroform was added dropwise, with stirring, to a solution of 90 g . (0.76 mole) of thionyl chloride in 500 ml . of chloroform. The flask was cooled intermittently in an ice bath. The reaction mixture was heated under reflux for 4 hr . and then stripped. The residue was dissolved in 400 ml . of chloroform and washed three times with 100 ml . of 10% sodium carbonate solution and water. The chloroform solution was dried over magnesium sulfate, and, after removing the drying agent and solvent, the residue was subjected to vacuum distillation. A viscous, light yellow oil distilled at $109-117^{\circ}\left(0.3 \mathrm{~mm}\right.$.), $n^{25} \mathrm{D}$ 1.4972. The yield was 78.5 g. (80%).
(2) W. H. Yanko, H. S. Mosher, and F. C. Whitmore. J. Am. Chem. Soc., 67. 666 (1945).

Table: Il

Ramattve Hypotensive Activity					
(1011ponml"	Relative activity ${ }^{\prime}$	Collo pronim!	Relative Ractivity	Coln- fromel	Retativt antivity
11a	10)	12	1. ${ }^{\text {F }}$	7	$0.1 ;$
19a	20	3	1 ir	8	0.5
17b	23	5	1.4	14a	0.4
2	1.8	13	1.8	17	0.4
14 c	10	14	(1.)	10	0.3
19b	10	16	0.8	14b	0.2
6	!	15	0.7	9	(). 2
17a	t	19	0.7	11	0.1
4	4	18	(1) i	1	0
20	3	11b	0.6		

"The numbers refer to the compounds in Table I. "The unost ative compound has been assigned :a value of 100 , and the ato tivities of all the other comperunds are expressed as a fraction of this valhe.
 Fourd: C, 69.84; H, $10.84 ;$ ㄱ, 5.57.

Preparation of Diamines. Method A.--A mixture ol 0.2 mole of cyolohexanone and 0.4 mole of the appropriate anine was ahowed to stand for $1 \mathrm{hr} .^{3}$ An exothermic reaction occurred and the temperature rose to $50-60^{\circ}$. If little or no heat was evolved, the mixture was warmed gently. The imine was dissolved in 100 mll . of dry ethanol, and 1.0 g . of redaced platinum oxide was added. Hydrogenation was carried out at $2-3$ atan pressure. In many cases, uptake was completed in 2 hr. or less. while some required as long as 18 hr . 'The catalyst and solvent were removed and the residue was subjected to vacuum distillation. The prodnets are described in Table I (1-6,8-10, 12, 13). This procedure is essentially that of Pearson, et al. ${ }^{+}$

Method B. - The methylation reactions were carried ont with
(3) In order to obtain N, N-dieycholexy-I.3-poppanediamine. 0.4 mole of ryclolexanone was allowed to react with 0.2 ninle of the amine. Eininiolat anounts of cyclohexanone and N-cyclohexyl-N-methyl-1.3-propanediamine were used to obtain $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexyl- N^{-1} - 1 ethyl-1.3-prolranedianine.
(4) I. E. Pearson, W. H. Jones, and A. C. C'ope. J. Am. Chem. Sor,. 68. $12: 7$ (1946).
formaldebyde and formic acid using the procedure deseribed hy Icke, et al." The two compounds prepared in this nimmer inc described in Table I (11 and 14),

Method C. ---Ta as sution of 0.1 mole of 3-dievelohoxylanitu:propyt chloride in 200 ml. of eth:uml was added 50 ml. oil 2 a'. :1nmonia water ar (0.2-0.5 mole of the :uppropriate anime. The resulting solntion was heated under reflux overnight. Thest if the sulvent was renomed, the residue was dissolved in $2(0)$ n 11 l . at water, and 30mb. of 50 , sodium livdroxide solution was adedel. The free base was taken up in ether and dried over magnesinun sulfate. The drying agent and sulvent were removed and the rosidue was subjected to vacmun distillation. The compomads ohtained by this method are deseribed in l'able ($15-20$:
N-Cyclohexyl-N-methyl-1,3-propanediamine--A pixtıre ol
 pionitrile, 100 mil. of methanol, $10(\mathrm{ml}$. of liquid annmanith, ant
 perature under $\times 0-90$ atm. for - - har. The catalyst and silvent were removed and the residue was subjected to vichlun distillation ('lable 1, 7 .

Reaction of N -Cyclohexyl-N, $\mathrm{N}^{\prime}, \mathrm{N}$-trimethyl-1,3-propanediamine with Cyclohexyl Bromide.-. A mixture of 6.0 g . 0.03 mule:
 2. (0.1 mole of achohexth brenide was heated at 1500° for several
 briling ethand and chilled to wive $\bar{i} \cdot 3$ g. of white arstalline solid. 11.p). 260 (if ${ }^{\circ}$. Recrastalization Irom ethimol raised the b1.jp. ta $26^{2}{ }^{\circ}$. It proved to be identionl with an anthentice sumple
 drebromide.

Acknowledgment.-The microanalytical results werc provided br Mr. Filmer Shelberg. Mr. Orville Kolsto, and staff of the . Thote Mieroanalytical Laboratory.
 Col. Vol. 1II, John Wiley and Sons, Inc., New Jork, N. Y. 1955. p. 723.
(t) 1). S. Tarbell, N. Shakespente, (. J. Cluns, atal J. F. Buanett. .J. Am (hem. Sor., 68, 1218 i1446).

[^0]: 1, This work wis presented before the Division of Medicinal Chemistry
 Angeles. Cahifornia, Anril. 1963.

